One minute MVS: Binder and loader

This topic is in the series of “One minute MVS” giving the essentials of a topic.

Your program

The use of functions or subroutines are very common in programming. For a simple call

x = mysub()

which calls an external function mysub has generated code like

MYPROG  CSECT     
     L 15,mysub the function 
     LA 1,PARMLIB
     BASR  14,15 or BALR in older programs 
...
mysub  DC  V(MYSUB)

where

  • MYPROG is an entry point to the program
  • the mysub variable defines some storage for the external reference(ER) to MYSUB.

The output of the assembler or compiler is a file or dataset member, known as an an “object deck” or “object file”. It cannot be executed, as it does not have the external functions or subroutines.

The binder (or linkage editor)

The binder program takes object decks, includes any subroutines and external code and creates a load module or program object.

In early days load modules were stored in PDS datasets. In the directory of a member was information about the size of the load module, and the entry point. As the binder got more sophisticated, the directory did not have enough space for all of the data that was created. As a result PDSE (Extended PDSs) were created, which have an extendable directory entry. For files in Unix Services Load modules are stored in the the Unix file system.

The term Program Object is used to cover load modules and files in the Unix file system. I still think of them both as Load Modules.

The binder takes the parts needed to create the program object, for example functions you created and are stored in a PDS or Unix, and includes code, for example for the prinf() function. These are merged into one file.

Pictorially the merged files look like

  • Offset 0 some C code.
  • Offset 200 MYPROG Object
    • Offset 10 within MYPROG, MYPROG entry point (so offset 210 from the start of the merged files)
    • Offset 200 within MYPROG, mysub:V(MYSUB)
    • Offset 310 within MYPROG end of MYPROG
  • Offset 512 FUNCTION1 object
  • Offset 800 MYSUB1 Object
    • Offset 28 within MYSUB1, MYSUB entry point
    • Offset 320 within MYSUB1, end of MYSUB

The binder can now resolve references. It knows that MYSUB entry point is at offset 28 within MYSUB1 object, and MYSUB1 Object is 800 from the start of the combined files. It can now replace the mysub:V(MYSUB) in MYPROG with the offset value 828.

The entire files is stored as a load module(program object) as one object, with a name that you give it, for example COLIN.

The loader

When load module COLIN is loaded. The loader loads the load module from disk into memory. For example at address 200,000. As part of the loading, it looks at the external references and calculates the address in memory from the offset value. So 200,000 + offset 828 is address 200828. This value is stored in the mysub variable.

When the function is about to be called via L 15,mysub, register 15 has the address of the code in memory and the program can branch to execute the code.

It gets more complex than this

Consider two source programs

int value = 0;
int total = 0;
void main()
{
  value =1;
  total = total + value; 
  printTotal();
  
}
int total;
int done;
void printotal()
{
  printf("Total = %d\n",total);
  done = 1; 
}

There are some global static variables. The variable “total” is used in each one – it is the same variable.

These programs are defined as being re-entrant, and could be loaded into read only storage.

The variables “value” and “total”, cannot go into read only storage as they change during the execution of the program.

There are three global variables: “value”, “total” and “done”; total is common to both programs.

These variables go into a storage area called Writeable Static Area (WSA).

If there are multiple threads running the program, each gets its own copy of the WSA, but they can all shared instructions.

A program can also have 31 bit resident code, and 64 bit resident code. The binder takes all of these parts and creates “classes” of data

  • The WSA class. This contains the merged list of static variables.
  • 64-bit re-entrant code – class. It takes the 64-bit resident code from all of the programs, and included subroutines and creates a “64-bit re-entrant” blob.
  • 31- bit re-entrant code -class. It takes the 31-bit resident code from all of the programs, and included subroutines and creates a “31-bit re-entrant” blob.
  • 64-bit data – class, from all objects
  • 31-bit data – class, from all objects

When the loader loads the modules

  • It creates a new copy of the WSA for each thread
  • It loads the 64 bit re-entrant code (or reuses any existing copy of the code) into 64 bit storage
  • It loads the 31 bit re-entrant code (or reuses any existing copy of the code) into 31 bit storage.

How can I see what is in the load module?

If you look at the output from the binder you get output which includes content like

CLASS  B_TEXT            LENGTH =      4F4  ATTRIBUTES = CAT,   LOAD, RMODE=ANY 
CLASS  C_DATA64          LENGTH =        0  ATTRIBUTES = CAT,   LOAD, RMODE=ANY 
CLASS  C_CODE64          LENGTH =     1A38  ATTRIBUTES = CAT,   LOAD, RMODE= 64 
CLASS  C_@@QPPA2         LENGTH =        8  ATTRIBUTES = MRG,   LOAD, RMODE= 64 
CLASS  C_CDA             LENGTH =     3B50  ATTRIBUTES = MRG,   LOAD, RMODE= 64 
CLASS  B_LIT             LENGTH =      140  ATTRIBUTES = CAT,   LOAD, RMODE=ANY 
CLASS  B_IMPEXP          LENGTH =      A6B  ATTRIBUTES = CAT,   LOAD, RMODE=ANY 
CLASS  C_WSA64           LENGTH =      6B8  ATTRIBUTES = MRG, DEFER , RMODE= 64 
CLASS  C_COPTIONS        LENGTH =      304  ATTRIBUTES = CAT, NOLOAD 
CLASS  B_PRV             LENGTH =        0  ATTRIBUTES = MRG, NOLOAD 

Where

  • B_TEXT is from HLASM (assembler program). Any sections are conCATenated together (Attributes =CAT)
  • C_WSA64 is the 64 bit WSA. Any data in these sections have been MeRGed (see the “total” variable above) (Attributes = MRG)
  • C_OPTIONS contains the list of C options used at compile time. The loader ignores this section (NOLOAD), but it is available for advanced programs such as debuggers to extract this information from the load module.

To introduce even more complexity. You can have class segments. These are an advanced topic where you want groups of classes to be independently loaded. Most people use the default of 1 segment.

Layout of the load module

Class layout

You can see the layout of the classes in the segment.

  • Class B_TEXT starts at offset 0 and is length 4F4.
  • Class C_CODE64 is offset 4F8 (4F4 rounded up to the nearest doubleword) and of length 1A38.
CLASS  B_TEXT            LENGTH =      4F4  ATTRIBUTES = CAT,   LOAD, RMODE=ANY 
                         OFFSET =        0 IN SEGMENT 001     ALIGN = DBLWORD 
  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -
CLASS  C_CODE64          LENGTH =     1A38  ATTRIBUTES = CAT,   LOAD, RMODE= 64 
                         OFFSET =      4F8 IN SEGMENT 001     ALIGN = DBLWORD ff

Within each class

CLASS  C_CODE64          LENGTH =     1A38  ATTRIBUTES = CAT,   LOAD, RMODE= 64 
                         OFFSET =      4F8 IN SEGMENT 001     ALIGN = DBLWORD 
--------------- 
                                                                                                  
 SECTION    CLASS                                      ------- SOURCE -------- 
  OFFSET   OFFSET  NAME                TYPE    LENGTH  DDNAME   SEQ  MEMBER 
                                                                                                  
                0  $PRIV000010        CSECT      1A38  /0000001  01 
       0        0     $PRIV000011        LABEL 
      B8       B8     PyInit_zconsole    LABEL 
     8B8      8B8     or_bit             LABEL 
     C30      C30     cthread            LABEL 
    1158     1158     cleanup            LABEL 
    11B8     11B8     printHex           LABEL 
  • The label $PRIV000010 CSECT is generated because I did not have a #pragma CSECT(CODE,”….”) statement in my source. If you use #pragma CSECT(STATIC,”….”) you get the name in the CLASS C_WSA64 section (see the following section)
  • The C function “or_bit” is at offset B8 in the class C_CODE64.

The static area

For the example below, the C module had #pragma CSECT(STATIC,”SZCONSOLE”)

CLASS  C_WSA64           LENGTH =      6B8  ATTRIBUTES = MRG, DEFER , RMODE= 64 
                         OFFSET =        0 IN SEGMENT 002     ALIGN = QDWORD 
--------------- 
                                                                                     
            CLASS 
           OFFSET  NAME                TYPE    LENGTH   SECTION 
                0  $PRIV000012      PART            10 
               10  SZCONSOLE        PART           5A0  ZCONSOLE 
              5B0  ascii_tab        PART           100  ascii_tab 
              6B0  gstate           PART             4  gstate 

There are two global static variables, common to all routines, ascii_tab, and gstate. They each have an entry defined in the class.

All of the static variables internal to routines are in the SZCONSOLE section. They do not have a explicit name because they are internal.

I thought writing to the operator was easy.

There are a couple of ways of writing a message to the operator and to the system log, but it took me a while to understand the differences. For example what are the circumstances when the following messages are produced (or not produced)?

  1. BPXM023I (COLIN) A Message
  2. A Message
  3. A Message
  4. +A Message
  5. @A Message

Note the messages in 2. and 3. were produced by different methods, and I got message 3. before lunch and message 4. after lunch.

I spent most of a day trying to find out why 3. and 4. were different; why 4. had a plus sign at the start of the message.

Background to operator messages

Message description

Message written to the operator or syslog have a description field which control how they are displayed. For example

  • 1 System Failure : The message indicates an error that disrupts system operations. To continue, the operator must reIPL the system or restart a major subsystem.
  • 2 Immediate Action Required: The message indicates that the operator must perform an action immediately. The message issuer could be in a wait state until the action is performed or the system needs the action as soon as possible to improve performance.
  • 3 Eventual Action Required: The message indicates that the operator must perform an action eventually.
  • 6 Job Status: The message indicates the status of a job or job step.
  • 7 Task-Related: The message is issued by an application or system program. Messages with this descriptor code are deleted when the job step that issued them ends.

Most applications will use description 3, 6, and 7. They will not use 1 (System Failure) or
2 (Immediate Action Required).

Action messages many have an * sign or @ sign displayed before the first character of the message. The * sign indicates that the WTO was issued by an authorized program. The @ sign indicates that the WTO was issued by an unauthorized program.

From the IBM documentation

Message routing

On a busy production system there are many messages produced. Some messages need an action taken, other messages are for information.

You can route where messages get sent to. For example if you want a tape mounted, then only those people involved with tapes are interested in these messages. Messages about security should be routed to security people. Messages which require operator action should be routed to an operator.

You specify where messages get sent to using the ROUTCDE field. These are documented in the documentation for WTO.

You control which console get which messages by the CONSOLxx member of SYS1.PARMLIB concatenation, or use the vary console command.

In the syslog output you get information like

N 4000000 S0W1 22204 10:02:46.19 JOB08909 00000090 @CP Desc 1

The 4000000 is the routing codes. 8000000 is routing code 1, 4000000 is routing code 2 etc.

You can configure which consoles get which messages for example

V 703,CONSOLE,ROUT=ALL

You can use this command to add (AROUT=rtcode) or delete (DROUT=rtcode) routing codes from the console.

Creating messages

Use of __console2().

There is a C runtime function __console2() which allows you to write a message to the console.

  • If the userid is has read access to BPX.CONSOLE in the FACILITY class or running as a super user (id(0) ), you get “A Message”
  • If the user does not have access to BPX.CONSOLE in the FACILITY class, and is not a super user, you get “BPXM023I (userid) A Message”

Use of Write To Log (WTL)

There is an assembler macro WTL which allows an application to write to the system log. This was not in my SYS1.MACLIB (which has all of the standard z/OS macros), and I could not find it. The documentation says

Note: IBM recommends you use the WTO macro with the MCSFLAG=HRDCPY parameter instead of WTL, because WTO supplies more data than WTL

Use Write To Operator

The assembler macro

    wto 'A Message'

Gives

+A message

The assembler services documentation has

If the user supplies a descriptor code in the WTO macro, an indicator is inserted at the start of the message. The indicators are: a blank, an at sign (@), an asterisk (*), or a blank followed by a plus sign (+). The indicator inserted in the message depends on the descriptor code that the user supplies and whether the user is a privileged or APF-authorized program or a non-authorized problem program. Table 1 shows the indicator that is used for each descriptor code.

With the assembler code

  wto 'CP Desc 1',DESC=1 
  wto 'CP Desc 2',DESC=2 
  wto 'CP Desc 3',DESC=3 
  wto 'CP Desc 11',DESC=11 
  wto 'CP Desc 12',DESC=12 

You get messages of different colours, and the messages may or may not be displayed!

Operator console

The operator screen is where messages are sent which require the operator to do something. These days automation processes many of the messages, so there should only be a few messages appearing on the operator console. Some of these messages can roll off the top of the screen.

APF authorised program

Not APF authorised program

From this

  • the APF authorised library includes messages with Descr 1 and 2. It uses “*” and ” ” as data prefix.
  • the non APF authorised library used prefix ” +” and “@”. It does not display messages with description 1 or 2, as an application should not be issuing messages of type “System Failure” or “Immediate Action Required”!

SYSLOG (from SDSF)

APF authorised

Not APF authorised

All messages are displayed. From the message prefix you can tell if the message came from an APF library or not.

Job log

APF authorised

Not APF authorised

The same information is displayed, allowing for the difference in the APF library.

Why did the + change over lunch?

The reason why it was different after lunch, was I had dynamically APF authorised my load library. I had re-ipled over lunch, so the load library was no longer authorised, and so it puts the “+” on the front – it is obvious now you know.

Make a decision on what you want

If you are going to use __console2 or WTO to write to the operator or syslog. You need do decide

  • If you want the operator to see it; for example some messages appear on the operator console, some do not appear there.
  • If the operator needs to take action messages prefixed with “*” or “@”
  • Which console to send the message to – just to hard copy, to the operator, or to the tape library

Configuring a Python external function written in C on z/OS

You can write external functions for Python in C. For example I wrote one which can do a WTO and write to the system logs.

Creating this external function is not difficult, there are just several things to do.

High level view

For an external function called zconsole, there is a DLL (shared object) with name zconsole.so . Within this is an entrypoint label PyInit_zconsole.

PyInit_zconsole is a C function which returns a Python Object with information about the entry points within the DLL.

It can also define additional information such as a Python string “__doc__” which can be used to describe what the function does.

You can use the Python statement

print(dir(zconsole))

to give information about the module, the entry points, the module description, and additional fields like version number.

Conceptually the following are needed

  • The entry point PyInit_xxxxxx returns a PyModuleDef object
  • The PyModuleDef contains
    • The name of the module
    • A description of the module
    • A pointer to the module functions
  • The module functions contain, for each function
    • The function name as used in the Python program
    • A pointer to the C function
    • Specification of the parameters of the function
    • A description of the function

Because C needs something to be defined before it is used,the normal layout of the source is

  • C functions
  • Module functions definitions (which refer to the C functions)
  • PyModuleDef which refers to the Module Functions
  • The entry point which refers to the PyModuleDef

The initial entry point

This creates a Python object from the Python Modules Definitions, and passes it back to Python.

PyMODINIT_FUNC PyInit_zconsole(void) { 
  PyObject *m; 
                                                                             
  /* Create the module and add the functions */ 
  m = PyModule_Create(&console_module); 
                                                                             
return m; 
} 

Python Module Definitions

static char console_doc[] = 
  "z Console interface for Python"; 
static struct PyModuleDef console_module = {
   PyModuleDef_HEAD_INIT,
   "console",
   console_doc,
   -1,
   console_methods
};

Where

  • “console” is a short description. For the above if you use dir(zconsole) it gives __name__ console
  • console_doc refers to the string above which is a description of the module (defined above it)
  • console_methods define the C entry points – see below.

Methods

The list of functions must end in a NULL entry. The code below defines Python functions acb, taskinfo, and cancel. You can pass the description as a constant string or as a char * variable.

char * console_acb_doc[] = "...";
char * taskinfo_doc = "get the ASCB, TCB and TCBTTIME "; 
....
static struct PyMethodDef console_methods[] = { 
    {"acb", (PyCFunction)console_acb,METH_KEYWORDS | METH_VARARGS, console_acb_doc}, 
    {"taskinfo", (PyCFunction)console_taskinfo,METH_KEYWORDS | METH_VARARGS, taskinfo_doc},    
    {"cancel", (PyCFunction)console_cancel,METH_KEYWORDS | METH_VARARGS, "Cancel the subtask"},     
    {NULL, (PyCFunction)NULL, 0, NULL}        /* sentinel */ 
    }; 

A C function

This C function is passed the positional variable object, and keyword object, because of the “METH_KEYWORDS | METH_VARARGS” specified in the methods above. See below,

static PyObject *console_taskinfo(PyObject *self, PyObject *args, PyObject *keywds ) { 
  PyObject *rv = NULL;  // returned object 
  ... 
  // build the return value
  rv = Py_BuildValue("{s:s,s:s,s:s,s:l}", 
          "jobname",jobName, 
          "ascb",  cASCB, 
          "tcb",   cTCB, 
          "tcbttime", ttimer); 
  if (rv == NULL) 
  { 
    PyErr_Print(); 
    PyErr_SetString(PyExc_RuntimeError,"Py_BuildValue in taskinfo"); 
    printf(" Py_BuildValue error in taskinfo\n"); 
  } 
  return rv; 
}

Passing parameters from Python to the C functions.

In Python you can pass parameters as positional variables or as a list of name=value.

Passing a list of variables.

For example in a Python program, call an external function where two parameters are required.

result  = zconsole.acb(ccp,[exit_flag]) 

In the function definition use

static struct PyMethodDef console_methods[] = {
{"acb", (PyCFunction)console_acb, METH_VARARGS, console_cancel_doc},
{NULL, (PyCFunction)NULL, 0, NULL} /* sentinel */
};

and use

static PyObject *console_acb(PyObject *self, PyObject *args) {
  PyObject * method;
  PyObject * p1 = NULL;
  if (!PyArg_ParseTuple(args,"OO", // two objects
          &method, // function
          &p1 )// parms
      )
  {
   PyErr_SetString(PyExc_RuntimeError,"Problems parsing parameters");
   return NULL;
  }
...
}

Using positional and keyword parameters

For example in a Python program

rc = zconsole.console2("from console2",routecde=14) 

“from console2” is a positional variable, and routecde=14 is a keyword variable.

The function definition must include the METH_KEYWORDS parameter to be able to process the keywords.

{"console2", (PyCFunction)console_console2,
              METH_KEYWORDS |   METH_VARARGS, 
              console_put_doc},

The C function needs

static PyObject *console_console2(PyObject *self, 
                                  PyObject *args, 
                                  PyObject *keywds 
                                 ) {
...
}

You specify a list of keywords (which much include a keyword for positional parameters)

static PyObject *console_console2(PyObject *self, 
                                  PyObject *args, 
                                  PyObject *keywds 
                                 ) {
  char * p = "";
  Py_ssize_t lMsg = 0;
  // preset these
  int desc = 0;
  int route = 0;
  static char *kwlist[] = {"text","routecde","descr", NULL};
  // parse the passed data
  if (!PyArg_ParseTupleAndKeywords(args, keywds, 
       "s#|$ii", 
        kwlist,
        &p , // message text
       &lMsg , // message text
       &route, // i this variable is an array
       &desc , // i this variable is an array
  )) 
  {
    // there was a problem
    return NULL;
  }

In the static char *kwlist[] = {“text”,”routecde”,”descr”, NULL}; you must specify a parameter for the positional data (text).

In the format specification above

  • s says this is a string
  • # save the length
  • | the following are optional
  • $ end of positional
  • i an integer parameter
  • i another integer parameter.

You should initialise all variable to a suitable value because a variable is gets a value only of the relevant keyword (or positional) is specified.

How do I print an object from C?

If you have got an object (for example keywds), you can print it from a C program using

PyObject_Print(keywds,stderr,0);

Advanced configuration

You can configure additional information for example create a special exception type just for your code. You can create this and use it within your C program.

#define Py23Text_FromString PyUnicode_FromString  // converts C char* to Py3 str 
static PyObject *ErrorObj; 

PyMODINIT_FUNC PyInit_zconsole(void) { 
  PyObject *m, *d; 
                                                                                                   
  /* Create the module and add the functions */ 
  m = PyModule_Create(&console_module); 
                                                                                                   
  /* Add some symbolic constants to the module */ 
  d = PyModule_GetDict(m); 
                                                                                                   
  PyDict_SetItemString(d, "__doc__", Py23Text_FromString(console_doc)); 
  PyDict_SetItemString(d,"__version__", Py23Text_FromString(__version__)); 
  ErrorObj = PyErr_NewException("console.error", NULL, NULL); 
  PyDict_SetItemString(d, "console.error", ErrorObj); 
                                                                                                   
return m; 
} 
  • The d = PyModule_GetDict(m) returns the object dict for the function (you can see what is in the dict by using print(dir(zconsole))
  • PyDict_SetItemString(d, “__doc__”, Py23Text_FromString(console_doc)); Creates a unicode string from the console_doc string, and adds it to the dict with name “__doc__”
  • It also adds an entry for the version.
  • You could also define constants that the application might use.
  • The ErrorObj creates a new exception called “console.error”. It is added to the dict as “console.error”. This can be used to report a function specific error. For example
    • PyErr_Format(ErrorObj, “%s wrong size. Given: %lu, expected %lu”, name, (unsigned long)given, (unsigned long)expected); return NULL;
    • PyErr_SetString(ErrorObj, “No memory for message”); return NULL;

How do I compile the C code?

I used a shell script to make it easier to compile. The setup3.py does any Python builds

touch /u/tmp/console/console.c 
* generate the assembler stuff (outside of setup
as          -d cpwto.o cpwto.s 
as -a       -d qedit.o qedit.s 1> qedit.lst 
export _C99_CCMODE=1 
python3 setup3.py build bdist_wheel 1>a 2>b 
* copy the module into the Python Path
cp ./build/lib.os390-27.00-1090-3.8/console/zconsole.so .
* display the output.  b should be empty 
oedit a b 

The setup3 Python program is in several logical parts

# Basic imports
import setuptools 
from setuptools import setup, Extension 
import sysconfig 
import os 
os.environ['_C89_CCMODE'] = '1' 
from setuptools.command.build_ext import build_ext 
from setuptools import setup 
version = '1.0.0' 

Override the build – so unwanted C compile options can be removed

class BuildExt(build_ext): 
   def build_extensions(self): 
     print(self.compiler.compiler_so) 
     if '-fno-strict-aliasing' in self.compiler.compiler_so: 
       self.compiler.compiler_so.remove('-fno-strict-aliasing') 
     if '-Wa,xplink' in self.compiler.compiler_so: 
        self.compiler.compiler_so.remove('-Wa,xplink') 
     if '-D_UNIX03_THREADS' in self.compiler.compiler_so: 
        self.compiler.compiler_so.remove('-D_UNIX03_THREADS') 
     super().build_extensions() 
setup(name = 'console', 
    version = version, 
    description = 'z/OS console interface. Put, and respond to modify and stop request', 
    long_description= 'provide interface to z/OS console', 
    author='Colin Paice', 
    author_email='colinpaice3@gmail.com', 
    platforms='z/OS', 
    package_dir = {'': '.'}, 
    packages = ['console'], 
    license='Python Software Foundation License', 
    keywords=('z/OS console modify stop'), 
    python_requires='>=3', 
    classifiers = [ 
        'Development Status :: 4 - Beta', 
        'License :: OSI Approved :: Python Software Foundation License', 
        'Intended Audience :: Developers', 
        'Natural Language :: English', 
        'Operating System :: OS Independent', 
        'Programming Language :: C', 
        'Programming Language :: Python', 
        'Topic :: Software Development :: Libraries :: Python Modules', 
        ], 
        cmdclass = {'build_ext': BuildExt}, 
    ext_modules = [Extension('console.zconsole',['console.c'], 
        include_dirs=["//'COLIN.MQ930.SCSQC370'","."], 
        extra_compile_args=["-Wc,ASM,SHOWINC,ASMLIB(//'SYS1.MACLIB')", 
              "-Wc,LIST(c.lst),SOURCE,NOWARN64,XREF","-Wa,LIST,RENT"], 
        extra_link_args=["-Wl,LIST,MAP,DLL","/u/tmp/console/qedit.o", 
                                            "/u/tmp/console/cpwto.o", 
        ], 
       )] 
   ) 

This code…

  • The cmdclass = {‘build_ext’: BuildExt}, statement tells it to use the function I had defined.
  • Uses the C header files from MQ, using dataset COLIN.MQ930.SCSQC370
  • The C program uses the __asm__ statement to create inline assembler code. The macros libraries are for this assembler source are defined with ASMLIB(//’SYS1.MACLIB’)”,
  • The C listing is put into c.lst.
  • The bind options are LIST,MAP,DLL
  • The generated binder statement is /bin/xlc build/temp.os390-27.00-1090-3.8/console.o -o build/lib.os390-27.00-1090-3.8/console/zconsole.so….
  • The binder statements used include the assembler modules generate in the shell script are

INCLUDE C8920
ORDER CELQSTRT
ENTRY CELQSTRT
INCLUDE ‘./build/temp.os390-27.00-1090-3.8/console.o’
INCLUDE ‘/u/tmp/console/qedit.o
INCLUDE ‘/u/tmp/console/cpwto.o’
INCLUDE ‘/usr/lpp/IBM/cyp/v3r8/pyz/lib/python3.8/config-3.8/libpython

Some gotcha’s to look out for

The code is generated as 64 bit code.

Check you have the correct variable types.

You may get messages about conversion from 64 bit values to 31 bit values.

The code is generated with the ASCII option.

This means

printf(“Hello world\n”); will continue to work as expected. But a blank is 0x20, not 0x40 etc. so be careful when using hexadecimal.

Pass a character string between Python and z/OS

You will have convert from ASCII to EBCDIC, and vice versa when going back. For example copy the data from Python into a program variable, then convert and use it.

memcpy(pOurBuffer,pPythonData,lPythonData);
__a2e_l(pOurBuffer,lPythonData) ;
...

Returning character data from z/OS back to Python

If the data is in a z/OS field ( rather than a variable in your program), you will need to copy it and covert it. You can pass a null terminate string back to Python, or specify a length;
The code below uses Py_BuildValue to creates a Python dictionary {“jobname”: “COLINJOB”).

memcpy(&returnJobName,zOSJobName,8); 
returnJobName[8] = 0; // null terminator
__e2a_l(&returnJobName,8);
rv = Py_BuildValue("{s:s}","jobname",returnJobName); .. null terminated
// or
rv = Py_BuildValue("{s:s#}","jobname",returnJobName,8); // specify length

Python creating a callback for an asynchronous task in an external function.

At the high level, I wanted a Python program running as a started task on z/OS to be able to catch operator requests, such as shutdown. I thought the solutions I came up with were a little complex for what I wanted, then I saw an example of using callback which did “After a period of time, invoke this function with these parameters”. Could this be adapted to provide “call this Python function when an operator issues a command to the started task?” As usual it got me into areas I was unfamiliar with, but the answer is yes it can be adapted.

Background

The interface for an application to be notified of an operator request is the z/OS QEDIT interface. There is an Event Control Block(ECB) which gets posted when there is data for it. An application can wait on this ECB.

There are several approaches that can be taken for a (Python) program

  • Have an application loop round checking the ECB to see if it has been posted. If it has been posted, issue a WAIT on the ECB, which will wake up immediately; get the message and return. This would work, but how long do you wait between loops? The smaller the time, the more frequently you scan, and so use up more CPU.
  • Have a thread which waits to be posted. The thread wakes up and notifies the application.
    • Python has an ASYNC interface where applications can multithread on one thread. The code has to be well behaved. It has to give up control to the main thread when it has no work to do. It the (single) thread does an operating system wait, all work stops until the wait completes. This approach will not work as the thread has to wait for the ECB.
    • Use a thread from the Python thread pool. You can get a thread from Python, which can wait for the ECB. This thread has to be well behaved and release the Global Interpreter Lock (GIL) (which controls Python multi programming). An application can only update Python data when it has the GIL. It prevents problems with concurrent access to fields.
    • Use a thread which is not from the Python task pool. This thread can callback into Python and run a function.

This blog post is about the last item in the above list; using a thread which is not in the Python thread pool, to call back into a function in the main Python program.

High level view of the program

There are several “moving parts” to the program.

  • A Python external function which is passed the Python function and any parameters for the function. This external function creates a z/OS thread and passes the Python function name and its parameters to the thread.
  • Register a Python shutdown clean-up exit, to wake up or cancel the async thread when the Python program finishes.
  • The C program which runs as an independent thread (also known as a subtask or TCB). It registers the thread with Python (and gets the GIL lock) then loops:
    • Release the GIL lock
    • Waits for the QEDIT ECB to be posted
    • Get the GIL lock
    • Builds the parameter list of the data received
    • Calls the python function passing the original data, and the received data
  • The Python function is passed the original parameters, and the data from the request. The Python function can add data to a queue, update Python variables and can enable an Python event. The main task can waiting on this event, and so process the requests when they come in.

The main python program

The handle = zconsole.acb(ccp_cb,[exit_event]) creates the async thread, and returns a handle. The handle is used to cancel the outstanding wait.

There is code to update variables in a thread safe manner by using a threadlock.

An event is used to signal completion.

import zconsole as zconsole 
...
# This is the callback function which gets control from the C program
def ccp_cb(args,QEDIT_data) : 
      global stop   # set this to stop to 1 to end processing
      global global_counter  # increment this 
      parms = args[1] # [functionName,[parms]) 
      e  = parms[0]   # event 
      with threadLock: 
          global_counter += 1 
      print("qedit",QEDIT_data) # display what we received
      if QEDIT_data["verb"] == "Stop": 
         stop = 1 
      e.set() # post event - wake up main 
###############################################
threadLock = threading.Lock() # for serialisation of updates
exit_event = threading.Event() # for event processing
# wait for up to 30 seconds at most 4 times
# initiate the console wait. using Asynchronouse CallBack
handle = zconsole.acb(ccp_cb,[exit_event]) 
# This returns a handle.
for i in range (0,3):  # at most 4 times
   exit_flag.wait(timeout=30) # set 30 seconds time out                                          
   if (exit_flag.is_set() == False): # we timed out
       break 
   print("GlobalCounter",global_counter) 
   print("stop",stop) # debug info
   if stop == 1: 
      break 
print("after stop ",stop)
zconsole.cancel(handle) #  stop the async task  

The external function zconsole.acb(function,[parms])

The external acb (asychronous call back) function (written in C) has code

  • to read the parameters passed to the function
  • increment the use count of the python fields to prevent Python from freeing them. The async thread decrements the use-count
  • attaches a thread to run a program (called cthread).
...
pthread_t thid; 
PyObject * method = NULL; 
PyObject * parms  = NULL; 
// get the data as objects
if (!PyArg_ParseTuple(args,"OO",
    &method,   // function
    &parms ))  // parms
{  /// problem?
    return NULL;
} 
...
// zargs is used to hold the parameters
zargs -> method = method; 
zargs -> parms  = parms; 
// the following are decremented within the Async thread
Py_INCREF(zargs -> parms;  /* Prevent it from being deallocated. */ 
Py_INCREF(zargs -> method);/* Prevent it from being deallocated. */
// create the thread
rc = pthread_create(&thid, NULL, cthread, zargs);  

The async C thread to process the QEDIT data

This program

  • is passed the parameter list containing the Python function Object, and the Python function parameter list object
  • releases the GIL
  • executes the assembler program which waits on the QEDIT ECB
  • when this returns, it gets the GIL
  • builds a dictionary of parameters (“name”:”value”,…) from the QEDIT data
  • calls the Python function passing the function object, the parameters passed to the external function, and the dictionary of parameters from the operator request (from QEDIT).
void * cthread(void *_arg) { 
  struct thread_args * zargs  = (struct thread_args *) _arg ; 
                                                                           
  PyGILState_STATE gstate; 
  PyObject *rv = NULL;  // returned object 
  PyObject *x  = NULL;  // returned object 
  char * ret  = 0; 
  long  rc; 
  int stop = 0; 
  rc = 0; 

  // register this thread to Python                                                                            
  gstate = PyGILState_Ensure(); 
  loop{

    Py_BEGIN_ALLOW_THREADS 
    //   QEDIT waits to be posted and returns the data    
    rc = QEDIT( pMsg);  // assembler function
    // get the GIL and stop any other work
    Py_END_ALLOW_THREADS 
    ...
    // convert console name from EBCDIC to ASCII
    __e2a_l(  pCIBX ->consolename ,8 ); 
    // build the parameter list to pass to Python function                                                                 
    rv = Py_BuildValue("{s:i,s:s,s:s#,s:s#,s:y#,s:y#,s:y#}", 
           "rc", rc, 
           "verb", pVerb, 
           "data",&(pCIB -> data[0]),lData, 
           "console",&(pCIBX -> consolename),l8, 
           "cart",&(pCIBX -> CART),l8, 
           "consoleid",&(pCIBX -> consoleid),l8, 
           "oconsoleid",&(pCIBX -> consoleid),l8); 
                                                                     
   Py_INCREF(rv);    /* Prevent it from being deallocated. */ 
   //  Call the Python function
   x = PyObject_CallFunctionObjArgs( zargs -> method,zargs -> a1,rv      , NULL); 

   if ( x != NULL) 
      Py_DECREF(x       );    /* Prevent x from being deallocated. */ 
   if (stop >0) 
   { 
      //printf("Stop found - cthread exiting \n"); 
     break; 
   } 
} // end of main loop
if ( zargs -> a1  != NULL) 
  Py_DECREF(zargs -> a1);    /* allow it to be deallocated. */ 
if ( zargs -> method  != NULL) 
   Py_DECREF(zargs -> method);  /* Alllow it to be deallocated. */ 
pthread_exit(ret); 
return 0; 
                                                                       

Ending the thread

A thread running asynchronously needs to end when the caller end. If it stays running you will get a system abend A03.

You have a choice

  • Pass a “shutdown ECB” to the thread, and have the thread wait on an ECBLIST (shutdown ECB, and QEDIT ECB). The high level application can then post this ECB. I had an external function zconsole.cancel(handle). This got the address of the ECB from the parameter, and posted it
  • Cancel the thread. I had an external function zconsole.cancel(…). This was passed the thread-id, and issued pthread_cancel(thread-id). In the end I used the shutdown ECB as it was cleaner.

I found it best to use a class for my thread, and register for a function to be called at the Python program shutdown.

For example

class console: 
    handle = None 
    def __init__(self,a): 
       print("console.__init__",a) 
    def cb(self,a,b): 
       # call the function to create the async task
       # and return the handle
       self.handle =  zconsole.acb(a,b) 
       #register cleanup for shutdown 
       atexit.register(self.cleanup,self.handle) 
                                                                                                    
    def cleanup(self,handle): 
       print("IN CLEANUP") 
       if handle != None: 
          zconsole.cancel(self.handle) 

This says when the cb function is called to set up the callback, add this object and the cleanup routine to the list of “shutdown” activities. The cleanup function, tells the async thread to shutdown.

How do you know the thread has ended?

You can use code like pthread_cleanup_push and pthread_cleanup_pop to call an ending function. This function is called when the thread:
• Calls pthread_exit()
• Does a return from the start routine
• Is cancelled because of a pthread_cancel()

In your cleanup routine you need to check for locks and other resources owned by the thread, and release them.

PyGILState_STATE gstate; // referred to from cthread and cleanup
void cleanup(void * arg)
{
   printf("Thread was cancelled!\n\n"); 
   int s = PyGILState_Check();
   printf("chthread Python latch %d\n",s);
   // release the lock if we have it
   if (s)      
      PyGILState_Release(gstate);
}
void * cthread(void *_arg) {
  pthread_cleanup_push(cleanup,NULL);
  struct thread_args * tA = (struct thread_args *) _arg ;
  ...

  pthread_cleanup_pop(0);
  pthread_exit(ret);

}


Why adding a printf caused my program to hang

Or “how to cancel a pthread safely; and reverse time”

I was doing some work with external Python functions, and attaching a subtask to intercept operator requests. It was very frustrating when I added a printf to the C program to provide diagnostic information – and the program did not produce any output even from a previous printf(spooky). Remove the printf and it worked including the earlier print(“Starting”) before my new printf.

After a couple of days, and some long walks I found out the reason why. It was all down to my lack of knowledge about what is available with pthreads, and locking.

Python has a lock to serialise work. While a thread has this lock, no other thread can do any Python work.

An attached thread can be configured as to how it responds to a cancel request. For example you may not want to cancel the thread in the middle of a critical update, for example while holding a lock.

By default it looks like threads are non-cancellable, unless you allow for it.

When I ran my job, there was an abend A03 A task tried to end normally by issuing a RETURN macro or by branching to the return address in register 14. The task was not ready to end processing because …: The task had attached one or more subtasks that had not ended.

The task needs to be told to shutdown – or to respond to a cancel thread.

Creating a thread

struct thread_args {
   PyObject *method;
   ...
   } 
#define _OPEN_THREADS 2 
#include <pthread.h>
//create a structure to pass parameters to the thread.
struct thread_args *zargs = malloc (sizeof (struct thread_args));
zargs -> method = method;
...
pthread_t thid; 
int rc; 
// invoke pThread to create thread and pass the parms through 
rc = pthread_create(&thid, NULL, cthread, zargs); 
if (rc != 0) { 
  printf("pthread rc %d \n", rc); 
  perror("pthread_create() error"); 
} 

To cancel a thread

The short answer to how to cancel a thread is

rc = pthread_cancel(thid);
if ( rc != 0) 
{
   perror("Trying to cancel the thread");
}

Return code 0 means the request to cancel the thread was successfully issued, but it does necessarily mean the thread has been cancelled, because the thread could be set as non- cancellable.

Within the thread program.

You can configure the program running as a thread to be cancellable:

  • Not cancellable – the default
  • Cancellable
    • At this point
    • At any time.
    • Not between these instructions

To make a thread non cancellable

int previous = pthread_setintr(PTHREAD_INTR_DISABLE);

You can use the returned variable to reset the status with pthread_setintr(previous).

To make a thread cancellable at this point

Set up the thread. Do pthread_setintrtype before pthread_setintr to eliminate a timing window.

// Specify how it is interruptible, any time, or controlled
if (pthread_setintrtype(PTHREAD_INTR_CONTROLLED ) == -1 )
{ perror(“error setting pthread_setintrtype”);… }

// Say it is interruptible
int previous = pthread_setintr(PTHREAD_INTR_ENABLE);

The initial values are

  • pthread_setintrtype is PTHREAD_INTR_CONTROLLED (0)
  • pthread_setintr is PTHREAD_INTR_ENABLE(0)

So you may not need to use the pthread_setintr* functions.

The thread needs an “interruptible” function.

The documentation says

PTHREAD_INTR_CONTROLLED:
The thread can be cancelled, but only at specific points of execution. These are:

  • When waiting on a condition variable, which is pthread_cond_wait() or pthread_cond_timedwait()
  • When waiting for the end of another thread, which is pthread_join()
  • While waiting for an asynchronous signal, which is sigwait()
  • When setting the calling thread’s cancel-ability state, which is pthread_setintr()
  • Testing specifically for a cancel request, which is pthread_testintr()
  • When suspended because of POSIX functions or one of the following C standard functions: close(), fcntl(), open(), pause(), read(), tcdrain(), tcsetattr(), sigsuspend(), sigwait(), sleep(), wait(), or write().

In my thread I had used the interruptible function pthread_testintr().

printf(“before testcancel\n”);
pthread_testintr() ;
printf(“after testcancel\n”);

When my code was running I had

before testcancel
after testcancel

before testcancel
after testcancel

pthread_cancel() was issued and the output was

before testcancel

So we can see the code was behaving as expected,and was cancelled inside/at the pthread_testintr() function.

To make a thread cancellable at any time

if (pthread_setintrtype(PTHREAD_INTR_ASYNCHRONOUS ) == -1 )
{ perror(“error setting pthread_setintrtype”);… }
int previous = pthread_setintr(PTHREAD_INTR_ENABLE);

If you are using this you need to design the code so the thread has no locks or mutexes. These will not be released automatically.

To make a thread not cancellable between these instructions

pthread_setintrtype(PTHREAD_INTR_ASYNCHRONOUS)
pthread_setintr(PTHREAD_INTR_DISABLE)
// thread non cancellable

get a lock
do some work
free a lock

pthread_setintr(PTHREAD_INTR_ENABLE);
// thread now cancellable any point after this

The pthread_setintr(PTHREAD_INTR_ DISABLE|ENABLE) code protects the non cancellable code.

The pthread_setintrtype(PTHREAD_INTR_ASYNCHRONOUS) says that outside of the non-cancellable code it can be cancelled at any point when interrupts are enabled.
Instead you could use pthread_setintrtype(PTHREAD_INTR_CONTROLLED ) and pthread_testintr(), to make your code interruptible at a specific point.

It is not spooky.

When running my code. I initially had it running so it was interruptible anywhere.

What was happening was

  • get python lock
  • get interrupted. Thread ends

By adding a printf to my code, it changed where the thread was interrupted. With the printf – it was interrupted while the Python lock was held, the thread was cancelled with the lock still held, and no other Python work ran.

Without the additional printf, the thread abended without the Python lock from being held.

By putting the pthread_ calls around the code with the lock I could make sure the lock was released before the thread ended.

Spooky lack of printing

The Python program had used print(“starting”), but this was written to the print buffers, it was not forced out to disk.

When I used Python print(“starting”,force=True) the data was forced out before progressing.

The C function is fflush(stdout);

Overall – not spooky at all, just a lack of understanding.

Running in parallel in Python on z/OS

I wanted to have a long running started task with Python acting as a server. As part of this I needed to wait on more than one event. This proved to be a hard challenge to get working.

Background

On z/OS a “process” is an address space, and a thread is a TCB.

There are several Python models for doing asynchronous work, and waiting for one or more events.

  • Multi processing. One thread acting as a dispatcher. “threads” are put on the work queue when they are ready to run, and taken off the work queue when they are waiting. Just like an operating system. This is the asyncio model.
  • Using multiple thread for the application. This is the ThreadPoolExecutor.
  • Using different address spaces for the application. This is the ProcessPoolExecutor.
  • Create threads within an extension function.

Information

I found the following very useful

Background knowledge

It took me a couple of days to get my parallel processing program to work. Even when I understood the concepts I still go it wrong, till I had a flash of understanding.

The Python Global Interpreter Lock (GIL)

To understand how Python works especially with multiple concurrent tasks you need to understand the Python Global Interpreter Lock.

Python code is not threadsafe, it is pseudo threadsafe. Rather than have to worry about concurrent access to data, and different threads being able to read and change data at the same time, Python allows only one application to run at a time. It uses a global lock for this. Your application gets the lock, does some work, and releases the lock. With a simple application this is invisible. When you try to develop an application with parallel “threads” you need to understand the lock.

My first operating system

When people start writing an operating system from scratch they may have logic like

  • Start the I/O
  • Spin in an instruction loop waiting for the I/O to complete
  • Do some more work

If you have only one processor in your system, no other work is done while waiting for the I/O to complete.

My second operating system

Having written your first operating system, the next operating system is more refined and has logic like

  • Start the I/O
  • Give up control – but resume the application when the I/O completes
  • Resume from here.

In this case even with just one processor in your system, it can do lots of other work while the I/O is in progress. That application instance is suspended until the I/O completes.

The same principles apply to Python.

Python concurrent processing models

As well as the “single threading” standard Python program, Python supports 3 concurrent processing models

  • One thread in one process (one address space). It can support concurrent bits of application as long as they cooperate while they are waiting for something. This is known as the asyncio model.
  • Multiple threads in one process (one address space). A typical use of this is CPU intensive threads, or operating systems waits. Conceptually there is no cooperation with Python waiting. This is known as the ThreadPool model.
  • One or more threads in multiple processes (Multiple address spaces). This is known as the ProcessPool model. I cannot see many usage cases for this model.

I’ll give you an exercise to help you understand the processing.

async def cons(name):
   print(name, "start",datetime.utcnow().strftime('%Y-%m-%d %H:%M:%S.%f'),flush=True)
   time.sleep(10) 
   print(name,"stop",datetime.utcnow().strftime('%Y-%m-%d %H:%M:%S.%f'),flush=True)
   return (42)
w = asyncio.create_task(cons("A"))
c = asyncio.create_task(cons("B")
done, pending = await asyncio.wait([c,w],return_when=asyncio.ALL_COMPLETED)

The above code (based on examples from the web) creates two asynchronous instances which allow you to run them in parallel. The instance is created with the create_task, and the wait for them both to complete is in the asyncio.wait([]) function.

Does it print out

A start 16:00:00
B start 16:00:00
A stop 16:00:10
B stop 16:00.10

Or

A start 16:00:00
A stop 16:00:10
B start 16:00.10
B stop 16:00:20

Full marks if you chose the second one. This is because time.sleep(10) does not give up control. It runs, waits, ends, and only then can B run.

If we replace time.sleep(10) with await asyncio.sleep(10). This “sleep” function has been enhanced with cooperation or “give up control”. When this is used, you get the first output, and both finish in 10 second.

From this I learned that not all Python functions are designed for running in parallel.

By displaying information about what was running, I could see that both instances were running on the same thread(TCB).

Using multiple TCBs.

I wrote an extension which waited for a z/OS console event. I had a “console” routine, and a “wait” routing in the Python program

When I used the asyncio model, there is only one task (TCB). All work was suspended while the my z/OS wait was in progress. As soon as this finished, other work ran. In this case using the asycnio model, and my external function doing an operating system wait, did not work.

I then switched to the ThreadPool model, so I could use one TCB for the z/OS wait thread, and the other Python work could run on a different TCB.

However this appeared to have the same problem. No work was done while the z/OS wait was in progress.

This was because of the Global Interpreter Lock. My thread was dispatched holding the GIL across the wait, so no other Python work ran – it was all waiting for the GIL.

To fix this I had to change my program to “cooperate” with Python and release the lock when it was not needed. In my C program I used

Py_BEGIN_ALLOW_THREADS
rc =ProgramToWaitForOperatorData()
Py_END_ALLOW_THREADS

  • Py_BEGIN_ALLOW_THREADS says give up the Python lock.
  • Py_END_ALLOW_THREADS says I’m ready to run – please give me the Python lock.

With this small coding fix, I got my parallelism.

From this I learned that you need to worry about the Global Lock if your Python Extension issues a wait, or can be suspended.

More information on coding with Asyncio

This model has one task which does all of the work. To successfully work in this environment, they need to use “cooperative function”. For example “await asyncio.sleep(2)” instead of the uncooperative “time.sleep(2)”. Extensions must not use long waits. If the extension waits, everything waits.

Minimum setup

You need

  • import asyncio at the top of your program
  • asyncio.run(main2()) to actually run your function (main2) in asyncio mode.

For example

import asyncio
# The following is defined as a function - but it does all the work
async def main2():
    ... 
#  This runs the above routine as an async thread.
asyncio.run(main2()) 

I defined the mywait function. It is passed an event so it can post (set) it and wake up the caller.

async def mywait(event): 
     print("WAIT Start",datetime.utcnow().strftime('%Y-%m-%d %H:%M:%S.%f'),flush=True) 
     time_event = threading.Event() 
     for i in range(0,4): 
        time_event.wait(10) # every 10 seconds
        print("WAIT Woke ",datetime.utcnow().strftime('%Y-%m-%d %H:%M:%S.%f'),flush=True) 
        if event.is_set(): 
           print("WAIT Event",datetime.utcnow().strftime('%Y-%m-%d %H:%M:%S.%f'),flush=True) 
           break 
     print("WAIT STOP ",datetime.utcnow().strftime('%Y-%m-%d %H:%M:%S.%f'),flush=True) 
     event.set() 
     return 44 

To create an asynchronous thread and start it running, use

w = asyncio.create_task(mywait(event),name=”MYWait”)
print(“W”,w)

gives

W <Task pending name=’MYWait’ coro=<mywait() running at /u/tmp/console/AS2.py:18>>

This means

  • It it a Task
  • It is pending execution (not finished running yet)
  • The name is ‘MYWait’
  • The routine is a function “mywait()”
  • from at /u/tmp/console/AS2.py:18

To wait for one or more tasks to complete use

done, pending = await asyncio.wait([c,w],return_when=asyncio.ALL_COMPLETED)

You give a list of the threads [c,w] and specify when you want it to return

  • return_when=asyncio.ALL_COMPLETED
  • return_when=asyncio.FIRST_COMPLETED

This returns a list of the tasks (done) which have finished, and a list of those (pending) which have not finished yet.

You can use

if c in done:  
    print(c.result()) 
    do something else

My console routine is defined

async def cons(event):
print("CONS start",datetime.utcnow().strftime('%Y-%m-%d %H:%M:%S.%f'),flush=True)
await asyncio.sleep(2) # do something which cooperates
print("CONS Stop ",datetime.utcnow().strftime('%Y-%m-%d %H:%M:%S.%f'),flush=True)
return (42)

Coding with ThreadPoolExecutor

With ThreadPoolExecutor you setup a thread pool. Any requests that are created, use a thread from this pool. If there are no available threads, the request is delayed until a thread is available.

A thread can use an operating system sleep but extensions need to release and obtain the Python GIL lock.

Minimum setup

You need

  • import concurrent.futures at the top of your program
  • executor = concurrent.futures.ThreadPoolExecutor(max_workers=3) to create a thread pool.

To create an asynchronous thread and start it running with function “mywait” use

w = executor.submit(mywait,parm1,parm2)

Note: This is different to the asyncio model where you passed mywait(parm1,parm2) .

print(“W”,w) gives

W < Future at 0x5008b9a4c0 state=running>

To wait for one or more tasks to complete use

done, pending = concurrent.futures.wait( [w,c], return_when=concurrent.futures.FIRST_COMPLETED)

You give a list of the threads [c,w] and specify when you want it to return

  • return_when=asyncio.ALL_COMPLETED
  • return_when=asyncio.FIRST_COMPLETED

This returns a list of the tasks (done) which have finished, and a list of those (pending) which have not finished yet.

You can use

if c in done:  
    print(c.result()) 
    do something else

The routine is defined

def cons(event):
print(“CONS start”,datetime.utcnow().strftime(‘%Y-%m-%d %H:%M:%S.%f’),flush=True)

print(“CONS Stop “,datetime.utcnow().strftime(‘%Y-%m-%d %H:%M:%S.%f’),flush=True)
return yy

ProcessPoolExecutor

I cannot see many uses for the ProcessPoolExecutor model. This runs threads in different address spaces. It makes sharing of information (such as program variables) much harder.

The basic programs is like

import concurrent.futures
def cons():
    zconsole.put("CONS TASK") 
    # do something involving a long wait
    return x 
def foo(a):
    zconsole.put("FOO TASK") 
    # do something involving a long wait
    return z 
zconsole.put("MAIN TASK") 
executor = concurrent.futures.ProcessPoolExecutor(max_workers=3) 
w = executor.submit(foo2,"parameter1") 
c = executor.submit(cons) 
done, pending = concurrent.futures.wait([w,c],return_when=concurrent.futures.FIRST_COMPLETED) 
if c in done: 
   print("cons task finished:  result",c.result()) 
   

The output on the z/OS console included

S PYT
IEF695I START PYT WITH JOBNAME PYT IS ASSIGNED TO USER START1
STC06801 +MAIN TASK
IRR812I PROFILE * (G) IN THE STARTED CLASS WAS USED
TO START BPXAS WITH JOBNAME BPXAS.
IEF403I BPXAS – STARTED – TIME=06.29.05
BPXP024I BPXAS INITIATOR STARTED ON BEHALF OF JOB PYT RUNNING IN ASID
0045

IRR812I PROFILE * (G) IN THE STARTED CLASS WAS USED 617
TO START BPXAS WITH JOBNAME BPXAS.
IEF403I BPXAS – STARTED – TIME=06.29.05
BPXP024I BPXAS INITIATOR STARTED ON BEHALF OF JOB PYT RUNNING IN ASID
0045

IEF403I BPXAS – STARTED – TIME=06.29.06
BPXP024I BPXAS INITIATOR STARTED ON BEHALF OF JOB PYT RUNNING IN ASID
0045
STC06802 +FOO TASK
STC06803+CONS TASK

Where 3 address spaces were started up, and the three Write To Operator requests are shown in bold, each coming from a different address space.

It takes a second or so to start each address space, so the start up of this approach is slower than using the thread model.

How it works

Your program is run in each address space.

You need to have

def main2:
    ....

if name == 'main':
   main2()

You need the “if name == ‘main'” to prevent the “main” starting in all the address spaces.

You can pass data to the asynchronous object for example

w = executor.submit(foo2,"parameter1") 

I do not think the objects are shared between different address spaces, so I think you need to treat these asynchronous functions as an opaque box. You give it data at start time, and you get the result when it has finished.

With the asynio and the ThreadPoolExecutor, they both run in the same address space, so an Python Object is available to all functions and threads.

Creating a thread in an external function

You can create a thread from an external function, so you are responsible for creating and ending the threads.

These threads can use Python services, such as call back to execute a Python function, or access variables and other information.

Your thread needs to register to Python using PyGILState_Ensure()… PyGILState_Release(). The thread has the GIL, and this must be given up when the thread is doing non Python work, and acquired when doing anything with Python.

PyGILState_STATE gstate;
gstate = PyGILState_Ensure();  // this gets the GIL
...
//  Give up the Python GIL lock
Py_BEGIN_ALLOW_THREADS
...
do some non Python work including wait
// Need to do some Python work, so get the GIL
Py_END_ALLOW_THREADS
Py_BuildValue....

PyGILState_Release(gstate);
pthread_exit(0);

You are responsible for terminating the thread at shutdown. This can be done using pthread_cancel(), or passing a request to the thread saying it needs to end.

Stopping a server cleanly

I had successfully got Python running as a server in z/OS started task. The next job I had was to be able to shut it down cleanly. This was much harder than I expected. The concepts apply to all servers – not just a Python Server.

My mission.

Now that I can run a Python server as a started task. How do I stop it? I want

  • A thread waiting on the operating system to notify the task when a shutdown request or operator request arrives.
  • or after 20 seconds of no activity (during prototyping)

Python has no capability to cancel a thread once it has started running. There is a thread.cancel() which will remove the work request from the “list of work to run” before it has been scheduled.

My first attempt failed.

  • I created an operator task which goes to sleep, and is woken up when a request arrives
  • and a timeout task. This sleeps for 20 seconds and returns.

My first attempt was to wait for either of these task to complete.

Case 1: The operator entered a command

  • The operator task woke up, and signalled shutdown.
  • The time out task carried on waiting till the end of the 20 seconds.
  • The system then shutdown

Case 2: There was no shutdown command, the request timed out

  • The time-out task woke up and signalled shutdown.
  • The operator task carried on waiting. It never returned.
  • I had to cancel it.

My second attempt was to fix the operator task

I changed the operator thread to pass a shutdown_request token. The task waits for either

  • the operating system to signal a command was entered,
  • or the “shutdown_request” was made.

The helped with case 2:

  • The time out task woke up and signalled shutdown.
  • The shutdown_request was posted (to the operator thread).
  • The operator thread woke up, and ended.
  • The server shut show cleanly – success!

My third attempt was to fix the time out task. This was slightly better.

I changed the time-out task to pass a shutdown_request token. I could not get the time-out task to wait on two events.

  • When the operator task command is woken, it notifies the time_out task. through the shutdown_request token
  • The time out task sleeps for 5 seconds then wakes up
  • If the shutdown request has been made, then leave.

My third attempt can delay up to 5 seconds before shutting down, so the solution is better – but not perfect. Is there a better way? To make it shutdown faster you could decrease the internal sleep period. This means it wakes up more frequently and so uses more CPU while doing nothing constructive.

My fourth attempted worked, by using a timer

I used a timer event instead of waiting.

def callb(handle):
    print("CALLBACK",datetime.utcnow().strftime('%Y-%m-%d %H:%M:%S.%f'),flush=True)
    # tell the operator task to close down. 
    zconsole.kill(handle)

h  = zconsole.init() 
t = threading.Timer(30,callb,[h]) 
print("SCHEDULE ",datetime.utcnow().strftime('%Y-%m-%d %H:%M:%S.%f'),flush=True) 
t.start() 
...
t.cancel()  #to remove the request

Where

  • 30 is the delay before starting, in seconds
  • callb is the name of my function to be called when the timer “pops”
  • [h] is the parameters passed in. You must specify a list of parameter [..]. Without it I got the message TypeError: callb() argument after * must be an iterable, not int.

The output was

SCHEDULE 2022-07-05 16:50:00.202267
CALLBACK 2022-07-05 16:50:30.208368

This worked!

This timer request can be cancelled by using the t.cancel() before it is scheduled. Once it has been scheduled, it only lasts for a few milliseconds.

Summary

if you want an application or server to be able to respond to different events you need.

  • To be able to cancel a thread while it is executing (if available) – or be able to send it a “shutdown” request.
  • It is better to schedule an event using a timer, than to have a thread waiting in a sleep. The scheduled event can be cancelled before it executes. A sleep cannot be cancelled.

Running Python as a started task (or from JCL) on z/OS

Setting this up was relatively easy. I used JCL

// PROC P=’cons’
// SET PY=’/usr/lpp/IBM/cyp/v3r8/pyz/bin/python3′
// SET PR=’/u/tmp/console’
//*
//STEP1 EXEC PGM=BPXBATSL,REGION=0M,TIME=NOLIMIT,MEMLIMIT=NOLIMIT,
// PARM=’PGM &PY &PR/&P..py’
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//SYSDUMP DD SYSOUT=*
//CEEDUMP DD SYSOUT=*
//STDIN DD DUMMY

As part of this work, I also developed zconsole which allows a program to get the parameters on the start command, any modify command (and the data), and the stop command.

I tried using print to //SYSOUT2, but was unsuccessful. I could write to a Unix file, but not to a “DD:…” statement.

Following on from a suggestion from Peter Sylvester I used AOPBATCH, and got that working as well.

// SET PY=’/usr/lpp/IBM/cyp/v3r8/pyz/bin/python3′
//*
//AOP EXEC PGM=AOPBATCH,PARM=’/&PY. //DD:STDIN P1 P2′
//STDIN DD PATH=’/u/tmp/zos/z.py’
//STDENV DD *
PATH=/usr/lpp/IBM/cyp/v3r8/pyz/bin:/u/tmp/zos
LIBPATH=/u/tmp/zos
PYTHONPATH=/u/tmp/zos
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//STDOUT DD SYSOUT=*
//…

This read from the Unix file in STDIN.

The parameters passed to the Python script are P1 P2

DD statements

If you use AOPBATCH you have access to DD statements. I had an external function which opens datasets, and I was able to use

//R EXEC PGM=AOPBATCH,REGION=0M,TIME=NOLIMIT,MEMLIMIT=NOLIMIT,
// PARM=’//usr/lpp/IBM/cyp/v3r8/pyz/bin/python3 /u/tmp/zos/z.py “DD:COLIN” r ‘ //STDOUT DD SYSOUT=*
//COLIN DD DISP=SHR,DSN=COLIN.VB

With this I was able to successfully use the C function, “fopen(“DD:COLIN”,”r”); .

When I used BPXBATCH I got

fopen() failed: EDC5129I No such file or directory. (errno2=0x05620062)

The best I/O is no I/O

In the course of an email exchange there was discussion about the performance of z/OS where the DASD was involved in an active-active environment – so every write I/O is mirrored over a network. There was a discussion about avoiding disk I/O for work files. VIO refers to data set allocations that exist in paging storage only. z/OS does not use a real device unless z/OS must page out the data set. If course you need enough real storage so you do not page!

In ISMF you can define a storage group, type of VIO which uses Virtual I/O.

I have a Storage Group of SGVIO which says use VIO if the data set size is less than 2000000 KB. If more than this is needed it will use DASD.

If you are in a mirrored environment, and you have DASD volumes which are just used for temporary files, or paging then these volumes do not need to be mirrored. (But you may want to mirror them in case some one puts a non temporary data set on the volume).

Fixing Python setup.py

I had been using setup.y to build some external modules for Python on z/OS. Unfortunately deep down in the configuration, the wrong parameters were being used, and I was unable to fix the problem.

Thanks to Steven Pitman who gave me a bypass.

By overriding the build_ext function I was able to remove the unwanted compiler options. I wanted to remove the -fno-strict-aliasing and ‘-Wa,xplink’ options.

You can do it with

if '-fno-strict-aliasing' in self.compiler.compiler_so: 
       self.compiler.compiler_so.remove('-fno-strict-aliasing') 

As shown in the code below. The extra code is in the bold font.

The code cmdclass = {‘build_ext’: BuildExt}, causes my function to be executed.

import setuptools 
from setuptools import setup, Extension 
import sysconfig 
import os 
import sysconfig 
import os 
os.environ['_C89_CCMODE'] = '1' 
from setuptools.command.build_ext import build_ext 
from setuptools import setup 
class BuildExt(build_ext): 
   def build_extensions(self): 
     print(self.compiler.compiler_so) 
     if '-fno-strict-aliasing' in self.compiler.compiler_so: 
       self.compiler.compiler_so.remove('-fno-strict-aliasing') 
     if '-Wa,xplink' in self.compiler.compiler_so: 
        self.compiler.compiler_so.remove('-Wa,xplink') 
     super().build_extensions() 
...
setup(name = 'console', 
   ...
   cmdclass = {'build_ext': BuildExt},
   ext_modules = [Extension('console.zconsole',['console.c'],
   ...