Baby Python scripts doing powerful work with MQ

I found PyMqi is an interface from Python to MQ. This is really powerful, and I’m am extending it to be even more amazing!

In this blog post, I give examples of what you can do.

  • Issue PCF commands and get responses back in words rather than internal codes ( so CHANNEL_NAME instead of 3501)
  • Saving the output of DISPLAY commands into files
  • Using these files to compare definitions and highlight differences.
  • Check these files conform to corporate standards.
  • Print out from the command event queue, and the stats event queue etc


I can use some python code to display information via PCF

  • # connect to MQ
  • qmgr = pymqi.connect( queue_manager,”QMACLIENT”,”127.0.0.1(1414)”)
  • # I want to inquire on all SYSTEM.* channels
  • prefix = b”SYSTEM.*”
  • # This PCF request
  • args = {pymqi.CMQCFC.MQCACH_CHANNEL_NAME: prefix}
  • pcf = pymqi.PCFExecute(qmgr)
  • # go execute it
  • response = pcf.MQCMD_INQUIRE_CHANNEL(args)

This is pretty impressive as a C program would take over 1000 lines to do the same!

This comes back with data like

  • 3501: b’SYSTEM.AUTO.RECEIVER’,
  • 1511: 3,
  • 2027: b’2018-08-16 ‘,
  • 2028: b’13.32.15′,
  • 1502: 50

which is cryptic even for experts because you need to know 3501 is the value of the type of data for “CHANNEL_NAME”.

I have some python code which converts this to..

  • ‘CHANNEL_NAME’: ‘SYSTEM.AUTO.RECEIVER’,
  • ‘CHANNEL_TYPE’: ‘RECEIVER’,
  • ‘ALTERATION_DATE’: ‘2018-08-16’,
  • ‘ALTERATION_TIME’: ‘13.32.15’
  • ‘BATCH_SIZE’: 50

for which you only need a kinder garden level of MQ knowledge to understand it. It converts 3501 to CHANNEL_NAME, and 3 into RECEIVER

With a few lines of python I can write this data out so each queue is a file on disk in YAML format.

A yaml file for a queue looks like

  • Q_NAME: TEMP
  • Q_TYPE: LOCAL
  • ACCOUNTING_Q: Q_MGR
  • ALTERATION_DATE: ‘2019-02-03’
  • ALTERATION_TIME: 18.15.52
  • BACKOUT_REQ_Q_NAME: ”

Now it gets exciting! (really)

Now it is in YAML, I can write small Python scripts to do clever things. For example

Compare queue definitions

  • from ruamel.yaml import YAML
  • import sys
  • yaml=YAML()
  • q1 = sys.argv[1] # get the first queue name
  • ignore = [“ALTERATION_DATE”,”ALTERATION_TIME”,
  • “CREATION_DATE”,”CREATION_TIME”]
  • in1 = open(q1, ‘r’) # open the first queue
  • data1 = yaml.load(in1) # and read the contents in
  • for i in range(2,len(sys.argv)): # for all of the passed in filenames
  • q2=sys.argv[i] # get the name of the file
  • in2 = open(q2, ‘r’) # open the file
  • data2 = yaml.load(in2) # read it in
  • for e in data1: # for each parameter in file 1
  • x1 = data1[e] # get the value from file 1
  • x2 = data2[e] # get the value from the other file
  • if not e in ignore: # some parameters we want to ignore
  • if x1 != x2: # if the parameters are different
  • print(q1,q2,”:”,e,x1,”/”,x2) # print out the queuenames, keywork and values

From this it prints out the differences

  • queues/CP0000.yml queues/CP0001.yml : Q_NAME CP0000 / CP0001
  • queues/CP0000.yml queues/CP0001.yml : OPEN_INPUT_COUNT 1 / 0
  • queues/CP0000.yml queues/CP0001.yml : MONITORING_Q Q_MGR / HIGH
  • queues/CP0000.yml queues/CP0001.yml : OPEN_OUTPUT_COUNT 1 / 0
  • queues/CP0000.yml queues/CP0002.yml : Q_NAME CP0000 / CP0002
  • queues/CP0000.yml queues/CP0002.yml : OPEN_INPUT_COUNT 1 / 0
  • queues/CP0000.yml queues/CP0002.yml : OPEN_OUTPUT_COUNT 1 / 0

I thought pretty impressive for 20 lines of code.

and another script -for checking standards

  • from ruamel.yaml import YAML
  • import sys
  • yaml=YAML()
  • q1 = sys.argv[1] # get the queue name
  • # define the variables to check
  • lessthan = {“MAX_Q_DEPTH”:100}
  • ne = {“INHIBIT_PUT”:”PUT_ALLOWED”,”INHIBIT_GET”: “GET_ALLOWED”}
  • in1 = open(q1, ‘r’) # open the first queue
  • data = yaml.load(in1) # and read the contents in
  • # for each element in the LessThan dictionary (MAX_QDEPTH), check with the
  • # data read from the file.
  • # if the data in the file is “lessthan” the value (100)
  • # print print out the name of the queue and the values
  • for i in lessthan: # just MAX_Q_DEPTH in this case
  • if data1[i] < lessthant[i] : print(q1,i,data[i],”Field in error. It should be less than <“,lessthan[i])
  • # if the values are not equal
  • for i in ne: # INHIBUT_PUT and #INHIBIT_GET
  • if data[i] != ne[i] : print(q1,i,data[i],”field is not equal to “,lt[i])

the output is

queues/CP0000.yml
MAX_Q_DEPTH 5000 Field in error. It should be < 100

Display command events

difference Q_NAME CP0000 CP0000 ALTERATION_DATE 2019-02-07 2019-02-11

difference Q_NAME CP0000 CP0000 ALTERATION_TIME 20.48.24 21.29.23

difference Q_NAME CP0000 CP0000 MAX_Q_DEPTH 4000 2000

With my journey so far – Python seems to be a clear winner in providing the infrastructure for managing queue managers.

4 thoughts on “Baby Python scripts doing powerful work with MQ

  1. I am geting error at line

    pcf = pymqi.PCFExecute(qmgr)

    error is

    pymqi.MQMIError: MQI Error. Comp: 2, Reason 2035: FAILED: MQRC_NOT_AUTHORIZED

    do we have to give authorization in IBM MQ setup for pcf to work

    Like

    1. Kavin,

      Yes, you need permission to do things on the queue manager. This is not a python problem, but an MQ set up problem. If you look in the error logs you should see an error message saying what userid and what queue caused the problem.

      regards

      Colin

      Like

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s